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Abstract. A geometric formulation of a generalization of Nambu mechanics is proposed. This
formulation is carried out, wherever possible, in analogy with that of Hamiltonian systems. In
this formulation, a strictly non-degenerate constant 3-form is attached/itedar®nsional phase
space. Time evolution is governed by two Nambu functions. A Poisson bracket of 2-forms is
introduced, which provides a Lie-algebra structure on the space of 2-forms. This formalism is
shown to provide a suitable framework for the description of non-integrable fluid flow such as
Arter flow, Chandrashekhar flow and of coupled rigid bodies.

1. Introduction

In 1973, Nambu proposed a generalization of Hamiltonian mechanics by considering systems
which obey the Liouville theorem in three-dimensional phase space [1]. In this formalism,
the points of the phase space were labelled by a canonical thpiet(x, y,z). A pair

of Hamiltonian-like functionsH;, H,, (which we call Nambu functions hereafter), were
introduced on this phase space. In terms of these functions the equations of motion were
written as

dr - -

— =VH; x VH>. 1

a1 1 X 2 (1)
Nambu also defined a generalization of Poisson bracket on this new phase space by

{F, Hi, Ho) = VF - (VH1 x VHp). @

An attempt was made by him to find a quantized version of the formalism, but he succeeded
only partially, since the correspondence between the classical and quantum versions is
largely lost [1].

The possibility of embedding the dynamics of a Nambu triplet in a four-dimensional
canonical phase-space formalism was proved in [2, 3], but such an embedding is local and
non-unique.

An algebraic approach, which was suitable for quantization, was developed in [4, 5]
where a generalization of the Nambu bracket was postulated. In this approach a rather
rigid consistency condition, called the fundamental identity, which is a generalization of
the Jacobi identity for Poisson brackets, was introduced. The algebraic approach, no doubt,
is quite elegant but is too restrictive, in the sense that the dynamicsmediraensional
manifold is determined byn — 1) functions Hy, ..., H,_1 which are integrals of motion.

1 E-mail: sagar@physics.unipune.ernet.in
i E-mail: adg@physics.unipune.ernet.in
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Due to this large number of integrals of motion, this formalism is not suitable for the
formulation of non-integrable or chaotic systems.

The geometric formulation of Hamiltonian mechanics has revealed several deep insights.
One would expect that similar insight would emerge from geometric formulation of Nambu
systems. Such possibilities were first examined by Estabrook [6] and more recently by
Fecko [7].

Recall that in the formulation of Hamiltonian systems, there exist several equivalent
ways [8] of endowing an even-dimensional manifai” with a symplectic structure. Two
of the main ways are to

(i) attach a closed non-degenerate 2-fan?;

(i) attach a bracket on the class@f functions onM?" with properties of bilinearity, skew-
symmetry, Leibnitz rule, Jacobi identity and non-degeneracy (i.e. a Poisson structure
together with non-degeneracy).

Both types of approaches have been tried with Nambu systems [1-7]:

e As mentioned above, it was found that the algebraic approach, starting with bracket
of functions, required the introduction of a rather rigid condition in the form of the
fundamental identity [5, 9] for consistency.

e On the other hand, the geometric analysis [6, 7] led to the conclusion that it was
impossible to obtain a volume form from a 3-form, except in the most trivial cases.

The complications mentioned above arise in both cases, because volume preservation
is a very stringent requirement. In the light of these findings we propose in this paper that
one need not impose volume preservation to construct a geometric formalism of Nambu
systems.

In this paper, we restrict ourselves to what we call a Nambu system of order 3. Such a
system has asddimensional phase space and two Nambu functions. We introduce a Nambu
manifold as a 8-dimensional manifold/®", together with a constant 3-form® which is
strictly non-degenerate. (The notion of non-degeneracy of 2-forms requires modification.
This modified notion is called strict non-degeneracy.) There is a natural generalization of
the Darboux basis corresponding to Hamiltonian systems. Equations of motion (Nambu
equations) are introduced in terms of two Nambu functions which are analogous to the
Hamiltonian function in Hamiltonian dynamics. A novel feature of the present paper is that
there is a natural way of introducing the Nambu—Poisson bracket of 2-forms. Thesfdrm
is preserved in the present approach which may be compared with the preservati®riaf
a Hamiltonian system. In Hamiltonian dynamics all powers@t are canonical invariants.
However, in the present formalism, sine#” is an odd-order form, no conclusions about
canonical invariants can be obtained from the preservatian‘dfitself.

The real justification for such a generalization can emerge from application to realistic
physical systems and from better algorithmic strategies. We demonstrate that the non-
integrable Arter flow and Chandrashekhar flow describing RayleighaRl convective
motion with rotation can suitably be described in our framework. We note further that
the algorithmic strategy developed in [11] can now be identified as a generalization (in our
framework) of symplectic integration corresponding to the Hamiltonian framework.

In section 2 we develop the geometric formulation. In section 2.1, The notion of strict
non-degeneracy of 3-forms is introduced. The notion of Nambu vector space is defined
using strict non-degeneracy. The existence of a Darboux-like basis is proved. This is
followed by the notion of a Nambu map. In section 2.2 a Nambu manifold of order 3
and canonical transformations on this manifold are defined. Furthermore, a correspondence
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between 2-forms and vectors is established. This is followed by a discussion of conditions
under which the 3-formw® is preserved. In section 2.3 the Nambu systems are defined.
A Nambu vector field corresponding to two Nambu functions is introduced. It is proved
that the phase flow preserves the Nambu structure. In section 2.4 a bracket of 2-forms is
introduced. This bracket provides a Lie algebra structure on the space of 2-forms.

In section 3 concrete applications of this framework to the examples of coupled rigid
bodies and to the fluid flows are described.

2. Geometric formulation of Nambu systems

We begin by recalling the essential features of the Hamiltonian formalism. The phase space
has the structure of a smooth manifaldl. A closed, non-degenerate 2-form, namely the
symplectic 2-formw @, is attached to this manifold. The non-degeneraay@fimposes the
condition thatM be even dimensional. Canonical transformations are those transformations
under which the 2-formw® remains invariant. Use ob® allows us to establish an
isomorphism between 1-forms and vector fields. The time evolution is governed by the
Hamiltonian vector fieldXy which is simply the vector field associated with the 1-form
dH, whereH is a smooth function om/.

Alternatively one can introduce the Poisson brackets on the spat® &inctions onM.
The Poisson bracket, together with the non-degeneracy condition, induces a symplectic
structure.

In the present paper, wherever possible, we develop the framework of Nambu systems
in analogy with that of Hamiltonian systems.

2.1. Nambu vector space

In this section we define the Nambu vector space which is analogous to the symplectic
vector space in Hamiltonian mechanics. The Nambu vector space is a vector space with
a strictly non-degenerate 3-form. We prove that in such a space there exists a preferred
choice of basis which we call the Nambu—Darboux basis.

Definition 2.1 (non-degenerate form)et £ be a finite-dimensional vector space and let
»® be a 3-form onE, i.e.

o®: ExExE—R.
Then the formw® is called anon-degenerate forrif

V non-zeroe; € E 3 ey, e3€ E such thatw® (eq, o, e3) # 0.
Remark 2.1In three dimensions every non-zero 3-form is non-degenerate.

Remark 2.21f the dimension of the vector space is less than three, then one cannot have
an anti-symmetric, non-degenerate 3-form.

Remark 2.3A non-degenerate 3-form allows us to define an analogue of the orthogonal
complement as follows.

Definition 2.2 (Nambu complement)et E be anm-dimensional vector space with > 3.
Let ® be an anti-symmetric and non-degenerate 3-fornkohet us chooses, e,, e3 € E
such thatw® (e, e, e3) # 0. Let Py = Sparfer, ez, e3). Then theNambu complemeraf
Py is defined as

P =(zeE | ¥z 21,220 =0V z1,22 € P1}.
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Proposition 2.1.Let E be anm-dimensional vector space with > 3. Let »® be an
anti-symmetric and non-degenerate 3-form Bn Let us choosees, ez, e3 € E such
that w® (e1, €2, e3) # 0. We further chooses, ez such thatw® (eq, e, e3) = 1. Let
Py = Sparier, ez, e3). ThenE = P @ P,

Proof. We writeVx € E
X' =x—o®(x, e e3)e1 — 0P (x, e3, e1)er — 0P (x, e1, e2)e.

It is easy to see that' € P;-*. From the definition ofP;"* it follows that Py N P,"* = {(0}.
HenceE = P1 @ P;*. O

Definition 2.3 (strictly non-degenerate form)et E be anm-dimensional vector space and
»® be an anti-symmetric and non-degenerate 3-formFonThen»® is called strictly
non-degeneratéf for each non-zere, € E 3 a two-dimensional subspade, ¢ E such
that

(i) @®(e1,x1,x2) # OV linearly independentey. x;, x} wherex;, x, € F; and Fy =
Sparie; + Ey).
(i) @@ (e1.21.22) =0V 21,22 € Fy -

Remark 2.4In three-dimensional space every non-degenerate form is strictly non-
degenerate.

Definition 2.4 (Nambu vector spacd)et E be a finite-dimensional vector space ant
be a completely anti-symmetric and strictly non-degenerate 3-fornk.ormrhen the pair
(E, »®) is called aNambu vector space

Recall that the rank of a 2-form is defined as the rank of its matrix representation. We
now introduce the notion of rank for the anti-symmetric 3-forms.

Definition 2.5 (rank oto®). Let E be a finite-dimensional vector space amf be a
completely anti-symmetric 3-form. Then tihenk of »® is defined as

sup{d | d =dimP, (P,»®|p) is a Nambu vector spake
PCE

Remark 2.5The following proposition gives the prescription for constructing the Nambu—
Darboux basis.

Proposition 2.2.Let E be anm-dimensional vector space. Let® be a 3-form of rank
m on E. Thenm = 3n for a unique integen. Furthermore, there is an ordered basis

{e;},i =1,...,m with the corresponding dual badis’},i = 1, ..., m, such that
n—1
3i+1 3i+2 3i+3 H
@ Za N Ao if n>0
@ - i=0
0® =0 otherwise.

Proof. The rank ofw® is m, implies that(E, »®) is a Nambu vector space. One can
assume that: > 3, for otherwise the proposition is trivial with = 0. Lete; € E and let
E1 C E be a 2-dimensional subspace such t&t(er, e, e3) # 0V linearly independent
{e1, e2, e3} Wherees, e3 € Py and P; = Spanie; + E1). Let ey, e3 be a basis of£q, then

e1, ez, e3 is a basis ofP;. Thus (P, o®|p)) is three-dimensional Nambu vector space. It
follows that one can writex® |, in basisa?l, @?, «® dual toey, e, e3 as

0®p =at Aa? Aadd
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If m = 3 then P, = E and the proposition is proved with = 1. Hence we assume
m > 3. We denoteQ, = Pl“. The dimension ofQ, is m — 3. Since the vector space
E is a Nambu vector space it follows di@;) > 3. Letes € Q1 C E = Jes,¢6 € E
such thatw® (e, es, e6) # 0V linearly independentey, es, eg) Wherees, eg € P, and
P, = Spariey, es, ¢g). By definition of Q; it follows that es,eg ¢ P;. We choose
es, 5 € PfE = Q. It follows from the strict non-degeneracy of® in E and the

facts le"’l C PZLE and P, C Q; that (Q1, a)<3>|Q1) is a Nambu vector space of dimension
m — 3.
Repeated application of the above argumentanin place of E and so on yields

E=P & - - P,
We stop the recursion when di,) = 0. Using the strict non-degeneracy ®f we get
0@ =@ p 4+ 0

n—1
— Za3z+1 A a3’+2 A a3’+3. O
i=0

Definition 2.6 (Nambu mappingsif. (E, w) and (F, p) are two Nambu vector spaces and
f : E — F is a linear map such that the pullbagkp = w, then f is called aNambu

mapping

Proposition 2.3.Let (E, w) and (F, p) be two Nambu vector spaces of dimensionahd
let a linear mapf : E — F be Nambu mapping. Thefi is an isomorphism on the vector
spaces.

Proof. Let if possible,f be singular. Then there existse E andx # 0 such thatfx = 0.
But since f is a Nambu mapping one can write

p(f(x), f(¥), f(2)) = w(x,y,2)

wherey, z € E are so chosen thaé(x, y, z) # 0. This leads to a contradiction. Henge
is an isomorphism. O

Proposition 2.4.Let (E, »®®) be a Nambu vector space of dimension Ihen the set of
Nambu mappings fronk to E forms a group under composition.

Proof. Now let f andg be Nambu mappings. Then
(fo g)*w(S) =g*o f*w(S) _ g*w(s) —o®
and

(f—l)*w(S) — (f*)—la)(3) — C()(S). D

2.2. Nambu manifold
In analogy with the notion of symplectic manifold we now introduce Nambu manifold.

Definition 2.7 (Nambu manifold).et M be a 3:-dimensionalC> manifold and letv® be

a 3-form field onM?* such thaw® is completely anti-symmetric, constant (i.e. a constant
section on the bundle of 3-forms) and strictly non-degenerate at every pale’of Then

the pair(M®', »®) is called aNambu manifold
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Remark 2.6In the case of Hamiltonian systems the fo&? is assumed to be closed, here
»® is assumed to be a constant form. (Whether or not a constdhis admissible on

a manifold is a topological issue. This restriction would not allow us to consider some
manifolds as Nambu manifolds.) The condition of closedness allows many 3-forms which
in general may not be consistent with the non-degeneracy condition.

Remark 2.7In fact it is possible to relax the condition of constancy.6? to the condition
of »® being locally constant.

Theorem 2.1 (Nambu—Darboux theoremhgt (M*", »®) be a Nambu manifold. Then at
every pointp € M* there is a chartU, ¢) in which »® is written as

n—1

0@y = Z dxziy1 A dxsize N dxsigs

i=0
where (x1, x2, X3, . . ., X3(1—1)+1, ¥3(—1)+2; X3—1)+3) are local coordinates oty described
by ¢.
Proof. Sincew® is a constant 3-form, on every chart we can use the proposition 2.2 and
get the required form fow®. O

The coordinates described in theorem 2.1 will be called Nambu—Darboux coordinates
hereafter. We use these coordinates in the remaining parts of the paper.

Definition 2.8 (canonical transformation).et (M3, »®) and (N¥, p®) be Nambu
manifolds. A C*® mapping F : M¥ — N% is called acanonical transformationif
F*p® = 0O,

Let 7,2(M®") denote a bundle of-forms onM¥, Q¥(M*") the space ok-form fields

on M3 and X (M%) the space of vector fields a¥®. Now for a given vector fieldl on
M3 we denote

ix QUM™Y — Q0 (M*)
as the inner product aof, with the k-form or contraction of &-form by X being given by
(ixn™) @y, ..., =™ (X, a1, ..., a-1)
wheren® e QM%) anday, ..., a1 € X(M®).
We now define the analogues of the raising and lowering operations. The map
b1 X(M¥) — QY(M?¥) is defined byX — X" = ixw®. In contrast, the map
g1 QM3 — xX(M3), is defined by the following prescription. Let be a 2-form

andw;; be its components in Nambu—Darboux coordinates. Then the componeritsue
given by

3
g3i+p 1
o = E E EplmA3i4l 3i+m 3
I,m=1

where 0<i <n -1, p=1,2 3 andsy, is the Levi-Civia symbol.

Remark 2.81t may appear that components @f have been given a definition using a
particular choice of coordinate system. The definition itself is actually coordinate free, as
shown in the appendix.

Remark 2.91n contrast to the customary meaning@&ndi used in ordinary tensor analysis,
we note that in this papér maps a vector to a 2-form and not to a 1-form; atsmaps a
2-form to a vector. From the above definition it is clear th&t)! = X but (o!)” may not
always yield the same.
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Remark 2.10In fact considerZ;) (M*"), the space of 2-forms at € M3'. The defines
an equivalence relation ofi’ (M%) as follows. Letw(” (x), oy’ (x) € T2(M*). We say
thatw® (x) ~ 02 (x) if () (x) = (@) (x). It is easy to see that is an equivalence
relation. We define the equivalence class8gm®) = T2 (M3")/ ~.

Let 0 (1), 05 (). 0f (x) € T2(M*) and the equivalence class be denoted by [ ],

ie. a1(x) = [07 ()], a2(x) = [0 ()], 23(x) = [0f (x)] where ay(x), @2(x), as(x) €
89 (M. The addition and scalar multiplication @& (M*') are defined as follows:

a1(x) + @2(x) = [0 (x) + 0 (0)]

e on(x) =1 0f ()]

whereu € R. It is easy to see tha(tsg (M%), +, R, -) forms a vector space and that the
dimension of this vector space i&.3

Now we investigate conditions under which the given Nambu ferf#i is invariant
under the action of the vector fiefgf associated with any 2-forra.

Proposition 2.5.Let 82 e Q3(M3"). Then(8@")* ~ g@.
Proof. The proof follows from the fact thatX”)! = X VX € X(M*). O

Theorem 2.2Let 8@ e Q3(M3"), and f' be a flow corresponding 8@, i.e. f* : M —
M? such that

d
—| (f0=B%)x  VxeMm™
dt|,_g

Then the formu® is preserved under the action @ iff d(8?")" = 0, i.e. [ 0® = @
iff d(B@°)° =0

Proof. We have
d " .
E(ft CL)(S)) — fl (Lﬁ(Z)ﬂa)(a))
= ‘)(‘t*(iﬁ(Z)11 dw(a) + d(iﬁ(z)u a)(a)))

= ["dpP.
If d(B?) =0= L(f"»®) =0 and also ifL (f*w®) = 0= d(p?') =0. O

From the above theorem it follows that the vector field corresponding to a 2-form
preserves the Nambu structure if that 2-form is equivalent to a closed 2-form. By the
Poincaé lemma one can locally write the closed 2-forndgswhere¢ is a 1-form. Without
loss of generality we choose= f; df, where f; and f, are C* functions onM®'. So we
can chooséB?")* asdfy A df, and by proposition 2.%df1 A dfz) ~ B@.

2.3. The Nambu system

Having introduced the relevant structure, namely the Nambu manifold, we now proceed
with the discussion of time-evolution. The time-evolution is governed by a vector field
obtained from two Nambu functions.
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Definition 2.9 (Nambu vector fieldyet Hi, H> be real-valuedC* functions (Nambu
functions) on(M?*, ®). ThenN is called theNambu vector fieldorresponding t6{1, Ho
if

N = (dH1 A dHo)".
Definition 2.10 (Nambu system quadruple(M®, »®, H1, H>) is called aNambu system

Henceforth we choos#H; AdH> as the representative 2-form of the clags(f AdH>].
We note that in the equivalence classddf; A dH, there are some 2-forms which are not
closed and cannot be expressedias A dHo.

Now for a given representative 2-form we have freedom in the choide;0and H,.
This freedom is discussed in [1] as gauge freedom in the choi@é @&nd,. The gauge
freedom is quite different from the freedom in the definitionfand is a generalization
of the freedom of the additive constant in Hamiltonian dynamics.

Definition 2.11 (Nambu phase flow)et (M3, »®, H;, H,) be a Nambu system. Then the
set of diffeomorphismg’ : M¥ — M®" satisfying

d
—| (g'm) = (dH1 A dH2) x Vo e M
dt|,—o

=Nz
is called theNambu phase flow

From the flow properties of a differentiable vector field it follows thétis a one-
parameter group of diffeomorphisms.
Theorem 2.3Nambu phase flow preserves the Nambu structure, i.e.

g 0 = 0.

Proof. The proof follows from theorem 2.2. O
Remark 2.11Since the proof of theorem 2.3 is valid for any timeprovided the flow
g' exists, it is automatically valid for any time interval, say framto 7. Furthermore,
the flow preserves the®, which implies that the mag’ : M® — M3 is a canonical
transformation. This leads to the interpretation, as in the case of Hamiltonian systems,
that ‘The history of a Nambu system is a gradual unfolding of successive canonical
transformation.” Such an observation is one of the crucial ingredients required for the
development of symplectic integrators for Hamiltonian systems. The present observation
can therefore be used for a similar algorithm for Nambu systems.

Proposition 2.6.Let (M®, v®, H,, Hy) be a Nambu system. Thel; and H, are
constants of motion.

Proof. We prove the result fot; (the proof forH, is similar):
d
—_ =L
T Ha ~H1
=iydH1
= dH1(N)

= dH1((dH1 A dH2)").

If we write the right-hand side in Nambu—Darboux coordinates using equations (3) we get
RHS = 0. O
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2.4. The Nambu bracket

We now define the analogue of the Poisson bracket for 2-forms. This leads to the algebra
of 2-forms. Furthermore, we also define the brackets for three functions in the conventional
fashion [1].
Definition 2.12 (Nambu Poisson bracketet »® and a),(f) be 2-forms. Then thé&lambu
Poisson brackets a map{, } : Q3(M3) x QY(M*) — Q9(M3") given by

(0@, a)zz) } = [wflz)j, a)Zz)j]b
where [] is the Lie bracket of vector fields.

Thus one writes

(P o2V E M) = a0 o) ED)  VE D XM,
2 2
b a’

From the definition it clear that ib® ~ o” then the{w®, i’} = 0 and ifo® ~ o

ando?® ~ 0? then{w?@, vl?} = (02, w2}
Proposition 2.7.Let (M*, ©®) be a Nambu manifold and, 8 € Q3(M3") then
{Ol, /3} = Laf(lgﬁ)b - Lﬁﬂ(aﬁ)b - d(ianiﬁ:w(s)).
Proof. We have
{a, B} = o g0
= Ly (ig0®) — ig(Lyzw®)
=Ly (B’ — iged(iz:0®)
= Lo (BY) — Lg: (@) — d(ipigp®). O

Proposition 2.8.Let « and 8 be 2-forms. Further let* be a Nambu vector field. Let
o' = (a)” and B’ = (B%)" then

{D{’ ﬂ} = La’nﬂ,'
Proof. The proof follows from proposition 2.7. O

Proposition 2.9.The space3 (M) forms a Lie algebra with multiplication defined by the
bracket, i.e. ifa, B,y € QM)

() {a+y, B} ={a, B} +{y. B} and{a, B + v} = {a, B} + {a, ¥},

(i) {o,a} =0;
(iii) {o, {B, v} +{B. v, a}} +{y, {o, B}} = 0.
Proof. This follows from the definition of the bracket. O

Remark 2.12In the Hamiltonian systems smooth functions on the phase space are
considered as observables. To each such funcfiom natural vector field (namely,
which is in correspondence witfy) is attached. We note that it is really to the 1-fodtfi
that a vector field is attached (all functions differing by constants form an equivalence class
producing identical/f.)

In view of the above discussion it is clear that in the Nambu framework 2-forms play
a basic role. In this connection we point out the following facts:

(i) Vector fields are naturally associated with 2-forms.
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(ii) The bracket of 2-forms provides the Lie algebra structure. On the other hand bracket
of functions introduces a non-associative structure as noted by [1, 9].

Definition 2.13 (Nambu bracket for functiong}onsider a Nambu manifold/*, »®) and
let £, g, h be C* functions onM?*'. Then theNambu bracket for functions given by

{f. &, h} = Lagrany | = iagnanydf.
By using equations (3) in Nambu—Darboux coordinates

n—1 3
{fvgvh}zz Z Eklm af ag o

ooty 0X3itk X34 0X3i4m

In three dimensions this is simply the definition of the bracket given by Nambu [1].
Proposition 2.10.Consider a Nambu systett¥", »®, g, h). Let f, g/, h’ € C®(M*")
satisfying(dh A dg) ~ (dh' A dg') and (df A dg')* = (df Adg'), then we have
{f, g, hYdg' = iwagranyiarragyo®.
Proof. We have
{f. g, h}dg" = (Lagrany f)dg’
= (iagnany (df ndg'))

. . 3
= i@gnanyiasadgy @™ U

The following proposition gives the relation between the bracket of 2-forms and the
bracket of functions.

Proposition 2.11.Let (M¥", ®) be a Nambu manifold and let g, i1, h» be C*® functions
satisfying(df A dg)* = df Adg and (dhy A dhy)® = dhy A dhy. Then

{dhy Adha, df ANdg} = d{f, hy, ho} Adg +df Ad{g, hi, ha}.
Proof. From proposition 2.7 we have
{dh1 Ndha, df Ndg} = Lanynany:(df N dg). U

Remark 2.13If a function f is an integral of motion then the Nambu bracket of the
function { f, H1, H2} is zero and conversely. On the other handgiis a 2-form such
that {dH1 A d'H>, B} = O then there exists a 2-forg in the equivalence class @f which
is an invariant of motion. Also by proposition 2.11 these two statements are consistent.

3. Applications of Nambu mechanics

The purpose of this section is to demonstrate that there are systems that can be described
appropriately using the formalism developed here.

3.1. Coupled rigid bodies

We now consider the simplest case of a coupling between two symmetric tops. The coupling

introduced is proportional to thecomponent of the angular momentum of each rotor (such

an idealized situation corresponds under certain assumptions to the case of two symmetric
tops interacting with each other through a magnetic moment coupling). The equations of
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motion for the angular momentéxg, y1, z1} and{x,, y», z»}) of the tops in their respective
body coordinates are

X1 = [y1z1(Io; = I,) + I, C3y122]
I.leZl
y1=— [x1z1(I;; — Iy,) + I, C3x127]
X1421
71=0
Xo = [y2z2(Lz, — 1y,) + I,C3y2z1]
Iyz122
Yo =— [x2z2(1;, — I,) + I.,C3x221]
IXZIZZ
Z'z =0.

These equations have the generalized Nambu form in the sense of this paper and they
can also be obtained from the following Nambu functions:

Hi= 3+ y1% 4+ 217 + 32 + 322 + 229)

1/x?  y?  z? 1(x2?  y? 22

It is obvious that the constarit; depends on the initial orientation of the tops in the
laboratory frame. In the absence of coupling the tops obey the Euler equations individually.
In the above vector field the terms lik, C3y1z2> can be considered to be the effective
external torque on one top due to the presence of the other. The important point to note is
that this torque merely changes the precession frequency of both the rigid bodies.

3.2. Fluid flows

It has been known for a long time that two-dimensional incompressible fluid flows can
be studied using the two-dimensional Hamiltonian framework. Holm and Kimura [11]
realized that the Nambu description is suitable for three-dimensional integrable flows of
incompressible fluids in the Lagrangian picture. However, the three-dimensional Nambu
system is not suitable as a framework for the formulation of non-integrable fluid flows. We
suggest that this requirement can be fulfilled by an appropriate choi¢& ,0f, in a 3:-
dimensional Nambu framework. Specifically we show that the Arter and Chandrashekhar
flows (describing Rayleigh-&hard convective motion) can be cast as flows on an invariant
three-dimensional subspace of a six-dimensional Nambu system.

Consider a Nambu manifolR®, »®) where

o® =dx Ady Adz+dx' Ady AdZ

in standard coordinates, y, z, x', y', z'} of RS,
It can be straightforwardly verified (using any symbolic manipulation package) that the
Nambu functions

B sin(x) B sin(x’) B ,coqx’) o ,cogy’) o
r=oo (G5 ) 00 (5 )~ K 0 0 - K e @

Ho = sin(x) sin(y) sin(z) — sin(x’) sin(y") sin(z') + (y — y)A + (x — x")B (5)
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where
_ KZcogy') cos(y) sir’(x) sin(z)
~ cogx) sin(y’) — K2sin(x) cogy’)

_ KZcogx’) cogx) Sir(y) sin(z)
~ cogy)sin(x’) + K2sin(y) cogx’)
produce a flow for which the subspace

/

x=x y=y =2 (6)

is an invariant subspace. Moreover, the flow restricted to this subspace has precisely the
form of the Chandrashekhar flow. The equations governing Chandrashekhar flow are

* = —sin(x) cogy) cosz) — K2 cogx) sin(y) cosz)

y = — cogx) sin(y) cogz) + K2 cogy) sin(x) cogz)

z = 2cogx) cogy) sin(z)

where(x, y, z) are the coordinates of the fluid particles in the Lagrangian picture.
In an exactly similar manner, if we choose the Nambu functions as

H, = log (::g;) —log <z::$:;) — Zb%@ —x')

b cogx) cos27)
sin(y’) cos(z)

=)

H, = sin(x) sin(y) sin(z) — sin(x”) sin(y") sin(z’) — (x —xC + (y — y)D

where

c cogx) sin(y) ((co§(x) + cog(y)) cog2z) sin(z) — (cog2x) cog2y)) sin(2z) cos(z))
€092z7)(coF(x) — coZ(y))

cog(y) sin(x) ((CO§(x) + cog(y)) cog2z) sin(z) — (cos2x) cog2y)) sin(2z) cos(z))
€092z)(coZ(x) — coZ(y))
then in the invariant subspace we get equations governing Arter flow, namely
X = —sin(x) cogy) co9z) + b cog2x) cog2z)

y = —cogx) sin(y) cosz) + b cog2y) coq2z)

z = 2cogx) cogy) sin(z) — b(coq2x) + cog2y)) sin(2z)
where again(x, y, z) are coordinates in the Lagrangian picture.

4. Conclusions

We have developed a geometric framework for the formulation of generalized Nambu
systems. This formalism is more suitable from the view point of dynamical systems.
As demonstrated by the example of Arter flow, a potentially non-integrable flow finds
a description in terms of generalized Nambu flow. Specifically, the Chandrashekhar flow
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and the Arter flow have been identified with the motion that takes place in an invariant
three-dimensional subspace of a six-dimensional Nambu system.

An interesting feature of the present formalism is the following. Whereas a three bracket
of functions gives rise to a non-associative structure, a Nambu Poisson bracket of 2-forms
gives rise to a Lie algebra. It was found that formulations involving 2-forms provide a
natural approach to a Nambu system of order three. We feel that it is worth investigating
the issues such as symmetries, reduction and integrability for such systems further. Nambu
systems of higher order could also be investigated. However, so far we have not carried
this out due to the lack of appropriate physical examples.

Acknowledgments

We thank Dr Hemant Bhate for the critical reading of the manuscript and for extensive help
in all aspects. We also thank ProfesgoB Marathe for his comments and for discussions.
We thank Ashutosh Sharma for pointing out [11], Professor N Mukunda for useful discussion
and M Roy for comments. SAP is grateful to CSIR (India) for financial assistance and ADG
is grateful to UGC (India) for financial assistance during the initial stages of the work.

Appendix

Definition A.1 (block-diagonal form)Let (M®*, »®) be a Nambu manifold. A 2-forma is
called ablock-diagonal formif for some X € X (M%)

ixa)(?’) =q.
Definition A.2 (non-diagonal form).et (M®", »®) be a Nambu manifold. A 2-forr is
called anon-diagonal formif for eachz, zp € X(M®") such thatx(zy, z0) # 0 A X with
the propertyw® (X, z1, z2) = a(z1, z2)-

Remark A.1lf a form is not non-diagonal this does not imply that it is block diagonal.
Proposition A.1.Let (M*, »®) be a Nambu manifold and let be any 2-form. Then
a=a’+do

wherea? is a block-diagonal form and’ is a non-diagonal form, and the decomposition
is unique.

Proof. Consider the Darboux coordinates

n—1 3
3i+l 3j+m
a = o3its 3j4mdx> " A dx™

i,j=0l.m=1

n—1 3

3i+l 3i+m
= E E aziy 3i4mdx™ T ANdx
i=0[,m=1
n—1 3
3i+l 3j+m
+ E E o34 3j+mdx Adx>T,
i,j=0,i#j l,m=1

It is easy to see that the first term, which we denoteay is a block-diagonal form
and the second term, which we denoteddy is a non-diagonal form. Now we prove the
uniqueness of the decomposition. Lt o} andag, o) be two distinct decompositions of
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« such thatof, «§ are block-diagonal forms angh, &, are non-diagonal forms. Thus we
havea{ + o = a4 + o) this implies thatx) is not non-diagonal. Hence has a unique

decomposition. O
Definition A.3.We define a magi : Q3(M%") — X(M¥) : a > of such that
ia:a)(S) =a

wherea? is the block-diagonal part af.

This map can be identified as the map introduced in section 2.2. &iseunique the
definition of the map is coordinate free.
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