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Abstract. A geometric formulation of a generalization of Nambu mechanics is proposed. This
formulation is carried out, wherever possible, in analogy with that of Hamiltonian systems. In
this formulation, a strictly non-degenerate constant 3-form is attached to a 3n-dimensional phase
space. Time evolution is governed by two Nambu functions. A Poisson bracket of 2-forms is
introduced, which provides a Lie-algebra structure on the space of 2-forms. This formalism is
shown to provide a suitable framework for the description of non-integrable fluid flow such as
Arter flow, Chandrashekhar flow and of coupled rigid bodies.

1. Introduction

In 1973, Nambu proposed a generalization of Hamiltonian mechanics by considering systems
which obey the Liouville theorem in three-dimensional phase space [1]. In this formalism,
the points of the phase space were labelled by a canonical tripletr̃ = (x, y, z). A pair
of Hamiltonian-like functionsH1, H2, (which we call Nambu functions hereafter), were
introduced on this phase space. In terms of these functions the equations of motion were
written as

dr̃

dt
= ∇̃H1× ∇̃H2. (1)

Nambu also defined a generalization of Poisson bracket on this new phase space by

{F,H1, H2} = ∇̃F · (∇̃H1× ∇̃H2). (2)

An attempt was made by him to find a quantized version of the formalism, but he succeeded
only partially, since the correspondence between the classical and quantum versions is
largely lost [1].

The possibility of embedding the dynamics of a Nambu triplet in a four-dimensional
canonical phase-space formalism was proved in [2, 3], but such an embedding is local and
non-unique.

An algebraic approach, which was suitable for quantization, was developed in [4, 5]
where a generalization of the Nambu bracket was postulated. In this approach a rather
rigid consistency condition, called the fundamental identity, which is a generalization of
the Jacobi identity for Poisson brackets, was introduced. The algebraic approach, no doubt,
is quite elegant but is too restrictive, in the sense that the dynamics on an-dimensional
manifold is determined by(n − 1) functionsH1, . . . , Hn−1 which are integrals of motion.
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Due to this large number of integrals of motion, this formalism is not suitable for the
formulation of non-integrable or chaotic systems.

The geometric formulation of Hamiltonian mechanics has revealed several deep insights.
One would expect that similar insight would emerge from geometric formulation of Nambu
systems. Such possibilities were first examined by Estabrook [6] and more recently by
Fecko [7].

Recall that in the formulation of Hamiltonian systems, there exist several equivalent
ways [8] of endowing an even-dimensional manifoldM2n with a symplectic structure. Two
of the main ways are to

(i) attach a closed non-degenerate 2-formω(2);
(ii) attach a bracket on the class ofC∞ functions onM2n with properties of bilinearity, skew-

symmetry, Leibnitz rule, Jacobi identity and non-degeneracy (i.e. a Poisson structure
together with non-degeneracy).

Both types of approaches have been tried with Nambu systems [1–7]:

• As mentioned above, it was found that the algebraic approach, starting with bracket
of functions, required the introduction of a rather rigid condition in the form of the
fundamental identity [5, 9] for consistency.

• On the other hand, the geometric analysis [6, 7] led to the conclusion that it was
impossible to obtain a volume form from a 3-form, except in the most trivial cases.

The complications mentioned above arise in both cases, because volume preservation
is a very stringent requirement. In the light of these findings we propose in this paper that
one need not impose volume preservation to construct a geometric formalism of Nambu
systems.

In this paper, we restrict ourselves to what we call a Nambu system of order 3. Such a
system has a 3n-dimensional phase space and two Nambu functions. We introduce a Nambu
manifold as a 3n-dimensional manifoldM3n, together with a constant 3-formω(3) which is
strictly non-degenerate. (The notion of non-degeneracy of 2-forms requires modification.
This modified notion is called strict non-degeneracy.) There is a natural generalization of
the Darboux basis corresponding to Hamiltonian systems. Equations of motion (Nambu
equations) are introduced in terms of two Nambu functions which are analogous to the
Hamiltonian function in Hamiltonian dynamics. A novel feature of the present paper is that
there is a natural way of introducing the Nambu–Poisson bracket of 2-forms. The formω(3)

is preserved in the present approach which may be compared with the preservation ofω(2) for
a Hamiltonian system. In Hamiltonian dynamics all powers ofω(2) are canonical invariants.
However, in the present formalism, sinceω(3) is an odd-order form, no conclusions about
canonical invariants can be obtained from the preservation ofω(3) itself.

The real justification for such a generalization can emerge from application to realistic
physical systems and from better algorithmic strategies. We demonstrate that the non-
integrable Arter flow and Chandrashekhar flow describing Rayleigh–Bénard convective
motion with rotation can suitably be described in our framework. We note further that
the algorithmic strategy developed in [11] can now be identified as a generalization (in our
framework) of symplectic integration corresponding to the Hamiltonian framework.

In section 2 we develop the geometric formulation. In section 2.1, The notion of strict
non-degeneracy of 3-forms is introduced. The notion of Nambu vector space is defined
using strict non-degeneracy. The existence of a Darboux-like basis is proved. This is
followed by the notion of a Nambu map. In section 2.2 a Nambu manifold of order 3
and canonical transformations on this manifold are defined. Furthermore, a correspondence
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between 2-forms and vectors is established. This is followed by a discussion of conditions
under which the 3-formω(3) is preserved. In section 2.3 the Nambu systems are defined.
A Nambu vector field corresponding to two Nambu functions is introduced. It is proved
that the phase flow preserves the Nambu structure. In section 2.4 a bracket of 2-forms is
introduced. This bracket provides a Lie algebra structure on the space of 2-forms.

In section 3 concrete applications of this framework to the examples of coupled rigid
bodies and to the fluid flows are described.

2. Geometric formulation of Nambu systems

We begin by recalling the essential features of the Hamiltonian formalism. The phase space
has the structure of a smooth manifoldM. A closed, non-degenerate 2-form, namely the
symplectic 2-formω(2), is attached to this manifold. The non-degeneracy ofω(2) imposes the
condition thatM be even dimensional. Canonical transformations are those transformations
under which the 2-formω(2) remains invariant. Use ofω(2) allows us to establish an
isomorphism between 1-forms and vector fields. The time evolution is governed by the
Hamiltonian vector fieldXH which is simply the vector field associated with the 1-form
dH , whereH is a smooth function onM.

Alternatively one can introduce the Poisson brackets on the space ofC∞ functions onM.
The Poisson bracket, together with the non-degeneracy condition, induces a symplectic
structure.

In the present paper, wherever possible, we develop the framework of Nambu systems
in analogy with that of Hamiltonian systems.

2.1. Nambu vector space

In this section we define the Nambu vector space which is analogous to the symplectic
vector space in Hamiltonian mechanics. The Nambu vector space is a vector space with
a strictly non-degenerate 3-form. We prove that in such a space there exists a preferred
choice of basis which we call the Nambu–Darboux basis.

Definition 2.1 (non-degenerate form).Let E be a finite-dimensional vector space and let
ω(3) be a 3-form onE, i.e.

ω(3) : E × E × E→ R.

Then the formω(3) is called anon-degenerate formif

∀ non-zeroe1 ∈ E ∃ e2, e3 ∈ E such thatω(3)(e1, e2, e3) 6= 0.

Remark 2.1.In three dimensions every non-zero 3-form is non-degenerate.

Remark 2.2.If the dimension of the vector space is less than three, then one cannot have
an anti-symmetric, non-degenerate 3-form.

Remark 2.3.A non-degenerate 3-form allows us to define an analogue of the orthogonal
complement as follows.

Definition 2.2 (Nambu complement).Let E be anm-dimensional vector space withm > 3.
Letω(3) be an anti-symmetric and non-degenerate 3-form onE. Let us choosee1, e2, e3 ∈ E
such thatω(3)(e1, e2, e3) 6= 0. Let P1 = Span(e1, e2, e3). Then theNambu complementof
P1 is defined as

P
⊥E
1 = {z ∈ E | ω(3)(z, z1, z2) = 0 ∀ z1, z2 ∈ P1}.
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Proposition 2.1.Let E be anm-dimensional vector space withm > 3. Let ω(3) be an
anti-symmetric and non-degenerate 3-form onE. Let us choosee1, e2, e3 ∈ E such
that ω(3)(e1, e2, e3) 6= 0. We further choosee2, e3 such thatω(3)(e1, e2, e3) = 1. Let
P1 = Span(e1, e2, e3). ThenE = P1⊕ P⊥E1 .

Proof. We write∀ x ∈ E
x ′ = x − ω(3)(x, e2, e3)e1− ω(3)(x, e3, e1)e2− ω(3)(x, e1, e2)e3.

It is easy to see thatx ′ ∈ P⊥E1 . From the definition ofP⊥E1 it follows thatP1 ∩ P⊥E1 = {0}.
HenceE = P1⊕ P⊥E1 . �
Definition 2.3 (strictly non-degenerate form).Let E be anm-dimensional vector space and
ω(3) be an anti-symmetric and non-degenerate 3-form onE. Thenω(3) is called strictly
non-degenerateif for each non-zeroe1 ∈ E ∃ a two-dimensional subspaceE1 ⊂ E such
that

(i) ω(3)(e1, x1, x2) 6= 0 ∀ linearly independent{e1, x1, x2} where x1, x2 ∈ F1 and F1 =
Span(e1+ E1).

(ii) ω(3)(e1, z1, z2) = 0 ∀ z1, z2 ∈ F⊥E1 .

Remark 2.4.In three-dimensional space every non-degenerate form is strictly non-
degenerate.

Definition 2.4 (Nambu vector space).Let E be a finite-dimensional vector space andω(3)

be a completely anti-symmetric and strictly non-degenerate 3-form onE. Then the pair
(E, ω(3)) is called aNambu vector space.

Recall that the rank of a 2-form is defined as the rank of its matrix representation. We
now introduce the notion of rank for the anti-symmetric 3-forms.

Definition 2.5 (rank ofω(3)). Let E be a finite-dimensional vector space andω(3) be a
completely anti-symmetric 3-form. Then therank ofω(3) is defined as

sup
P⊂E
{d | d = dimP, (P, ω(3)|P ) is a Nambu vector space}.

Remark 2.5.The following proposition gives the prescription for constructing the Nambu–
Darboux basis.

Proposition 2.2.Let E be anm-dimensional vector space. Letω(3) be a 3-form of rank
m on E. Thenm = 3n for a unique integern. Furthermore, there is an ordered basis
{ei}, i = 1, . . . , m with the corresponding dual basis{αi}, i = 1, . . . , m, such that

ω(3) =


n−1∑
i=0

α3i+1 ∧ α3i+2 ∧ α3i+3 if n > 0

ω(3) = 0 otherwise.

Proof. The rank ofω(3) is m, implies that(E, ω(3)) is a Nambu vector space. One can
assume thatm > 3, for otherwise the proposition is trivial withn = 0. Let e1 ∈ E and let
E1 ⊂ E be a 2-dimensional subspace such thatω(3)(e1, e2, e3) 6= 0 ∀ linearly independent
{e1, e2, e3} wheree2, e3 ∈ P1 andP1 = Span(e1 + E1). Let e2, e3 be a basis ofE1, then
e1, e2, e3 is a basis ofP1. Thus (P1, ω

(3)|P1) is three-dimensional Nambu vector space. It
follows that one can writeω(3)|P1 in basisα1, α2, α3 dual toe1, e2, e3 as

ω(3)|P1 = α1 ∧ α2 ∧ α3
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If m = 3 thenP1 = E and the proposition is proved withn = 1. Hence we assume
m > 3. We denoteQ1 = P

⊥E
1 . The dimension ofQ1 is m − 3. Since the vector space

E is a Nambu vector space it follows dim(Q1) > 3. Let e4 ∈ Q1 ⊂ E ⇒ ∃ e5, e6 ∈ E
such thatω(3)(e4, e5, e6) 6= 0 ∀ linearly independent{e4, e5, e6} where e5, e6 ∈ P2 and
P2 = Span(e4, e5, e6). By definition of Q1 it follows that e5, e6 6∈ P1. We choose
e5, e6 ∈ P

⊥E
1 = Q1. It follows from the strict non-degeneracy ofω(3) in E and the

factsP
⊥Q1
2 ⊂ P⊥E2 andP2 ⊂ Q1 that (Q1, ω

(3)|Q1) is a Nambu vector space of dimension
m− 3.

Repeated application of the above argument onQ1 in place ofE and so on yields

E = P1⊕ · · · ⊕ Pn.
We stop the recursion when dim(Qn) = 0. Using the strict non-degeneracy ofω(3) we get

ω(3) = ω(3)|P1 + · · · + ω(3)|Pn

=
n−1∑
i=0

α3i+1 ∧ α3i+2 ∧ α3i+3. �

Definition 2.6 (Nambu mappings).If (E, ω) and (F, ρ) are two Nambu vector spaces and
f : E → F is a linear map such that the pullbackf ∗ρ = ω, thenf is called aNambu
mapping.

Proposition 2.3.Let (E, ω) and (F, ρ) be two Nambu vector spaces of dimension 3n and
let a linear mapf : E→ F be Nambu mapping. Thenf is an isomorphism on the vector
spaces.

Proof. Let if possible,f be singular. Then there existsx ∈ E andx 6= 0 such thatf x = 0.
But sincef is a Nambu mapping one can write

ρ(f (x), f (y), f (z)) = ω(x, y, z)
wherey, z ∈ E are so chosen thatω(x, y, z) 6= 0. This leads to a contradiction. Hencef
is an isomorphism. �

Proposition 2.4.Let (E, ω(3)) be a Nambu vector space of dimension 3n. Then the set of
Nambu mappings fromE to E forms a group under composition.

Proof. Now let f andg be Nambu mappings. Then

(f ◦ g)∗ω(3) = g∗ ◦ f ∗ω(3) = g∗ω(3) = ω(3)

and

(f −1)∗ω(3) = (f ∗)−1ω(3) = ω(3). �

2.2. Nambu manifold

In analogy with the notion of symplectic manifold we now introduce Nambu manifold.

Definition 2.7 (Nambu manifold).LetM3n be a 3n-dimensionalC∞ manifold and letω(3) be
a 3-form field onM3n such thatω(3) is completely anti-symmetric, constant (i.e. a constant
section on the bundle of 3-forms) and strictly non-degenerate at every point ofM3n. Then
the pair(M3n, ω(3)) is called aNambu manifold.
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Remark 2.6.In the case of Hamiltonian systems the formω(2) is assumed to be closed, here
ω(3) is assumed to be a constant form. (Whether or not a constantω(3) is admissible on
a manifold is a topological issue. This restriction would not allow us to consider some
manifolds as Nambu manifolds.) The condition of closedness allows many 3-forms which
in general may not be consistent with the non-degeneracy condition.

Remark 2.7.In fact it is possible to relax the condition of constancy ofω(3) to the condition
of ω(3) being locally constant.

Theorem 2.1 (Nambu–Darboux theorem).Let (M3n, ω(3)) be a Nambu manifold. Then at
every pointp ∈ M3n there is a chart(U, φ) in which ω(3) is written as

ω(3)|U =
n−1∑
i=0

dx3i+1 ∧ dx3i+2 ∧ dx3i+3

where (x1, x2, x3, . . . , x3(n−1)+1, x3(n−1)+2, x3(n−1)+3) are local coordinates onU described
by φ.

Proof. Sinceω(3) is a constant 3-form, on every chart we can use the proposition 2.2 and
get the required form forω(3). �

The coordinates described in theorem 2.1 will be called Nambu–Darboux coordinates
hereafter. We use these coordinates in the remaining parts of the paper.

Definition 2.8 (canonical transformation).Let (M3n, ω(3)) and (N3n, ρ(3)) be Nambu
manifolds. A C∞ mappingF : M3n → N3n is called acanonical transformationif
F ∗ρ(3) = ω(3).

Let T 0
k (M

3n) denote a bundle ofk-forms onM3n, �0
k(M

3n) the space ofk-form fields
onM3n andX (M3n) the space of vector fields onM3n. Now for a given vector fieldX on
M3n we denote

iX : �0
k(M

3n)→ �0
k−1(M

3n)

as the inner product ofX, with thek-form or contraction of ak-form byX being given by

(iXη
(k))(a1, . . . , ak−1) = η(k)(X, a1, . . . , ak−1)

whereη(k) ∈ �0
k(M

3n) anda1, . . . , ak−1 ∈ X (M3n).
We now define the analogues of the raising and lowering operations. The map

[ : X (M3n) → �0
2(M

3n) is defined byX 7→ X[ = iXω
(3). In contrast, the map

] : �0
2(M

3n) → X (M3n), is defined by the following prescription. Letα be a 2-form
andαij be its components in Nambu–Darboux coordinates. Then the components ofα] are
given by

α]
3i+p = 1

2

3∑
l,m=1

εplmα3i+l 3i+m (3)

where 06 i 6 n− 1, p = 1, 2, 3 andεplm is the Levi–Civit̀a symbol.

Remark 2.8.It may appear that components ofα] have been given a definition using a
particular choice of coordinate system. The definition itself is actually coordinate free, as
shown in the appendix.

Remark 2.9.In contrast to the customary meaning of[ and] used in ordinary tensor analysis,
we note that in this paper[ maps a vector to a 2-form and not to a 1-form; also] maps a
2-form to a vector. From the above definition it is clear that(X[)] = X but (α])[ may not
always yield the sameα.
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Remark 2.10.In fact considerT 0
2x
(M3n), the space of 2-forms atx ∈ M3n. The ] defines

an equivalence relation onT 0
2x
(M3n) as follows. Letω(2)1 (x), ω

(2)
2 (x) ∈ T 0

2x
(M3n). We say

thatω(2)1 (x) ∼ ω(2)2 (x) if (ω(2)1 )](x) = (ω(2)2 )](x). It is easy to see that∼ is an equivalence
relation. We define the equivalence classesS0

2x
(M3n) = T 0

2x
(M3n)/ ∼.

Let ω(2)1 (x), ω
(2)
2 (x), ω

(2)
3 (x) ∈ T 0

2x
(M3n) and the equivalence class be denoted by [ ],

i.e. α1(x) = [ω(2)1 (x)], α2(x) = [ω(2)2 (x)], α3(x) = [ω(2)3 (x)] where α1(x), α2(x), α3(x) ∈
S0

2x
(M3n). The addition and scalar multiplication onS0

2x
(M3n) are defined as follows:

α1(x)+ α2(x) = [ω(2)1 (x)+ ω(2)2 (x)]

µ · α1(x) = [µ · ω(2)1 (x)]

whereµ ∈ R. It is easy to see that(S0
2x
(M3n),+,R, ·) forms a vector space and that the

dimension of this vector space is 3n.

Now we investigate conditions under which the given Nambu formω(3) is invariant
under the action of the vector fieldβ] associated with any 2-formβ.

Proposition 2.5.Let β(2) ∈ �0
2(M

3n). Then(β(2)
]

)[ ∼ β(2).
Proof. The proof follows from the fact that(X[)] = X ∀X ∈ X (M3n). �

Theorem 2.2.Let β(2) ∈ �0
2(M

3n), andf t be a flow corresponding toβ(2)
]

, i.e.f t : M3n→
M3n such that

d

dt

∣∣∣∣
t=0

(f tx) = (β(2)] )x ∀ x ∈ M3n.

Then the formω(3) is preserved under the action ofβ(2)
]

iff d(β(2)
]

)[ = 0, i.e.f t ∗ω(3) = ω(3)
iff d(β(2)

]

)[ = 0

Proof. We have

d

dt
(f t
∗
ω(3)) = f t ∗(L

β(2)
] ω(3))

= f t ∗(i
β(2)

] dω(3) + d(i
β(2)

] ω(3)))

= f t ∗d(β(2)] )[.
If d(β(2)

]

)[ = 0⇒ d
dt
(f t
∗
ω(3)) = 0 and also if d

dt
(f t
∗
ω(3)) = 0⇒ d(β(2)

]

)[ = 0. �

From the above theorem it follows that the vector field corresponding to a 2-form
preserves the Nambu structure if that 2-form is equivalent to a closed 2-form. By the
Poincaŕe lemma one can locally write the closed 2-form asdξ whereξ is a 1-form. Without
loss of generality we chooseξ = f1 df2 wheref1 andf2 areC∞ functions onM3n. So we
can choose(β(2)

]

)[ asdf1 ∧ df2 and by proposition 2.5(df1 ∧ df2) ∼ β(2).

2.3. The Nambu system

Having introduced the relevant structure, namely the Nambu manifold, we now proceed
with the discussion of time-evolution. The time-evolution is governed by a vector field
obtained from two Nambu functions.
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Definition 2.9 (Nambu vector field).Let H1, H2 be real-valuedC∞ functions (Nambu
functions) on(M3n, ω(3)). ThenN is called theNambu vector fieldcorresponding toH1,H2

if

N = (dH1 ∧ dH2)
].

Definition 2.10 (Nambu system).A quadruple(M3n, ω(3),H1,H2) is called aNambu system.

Henceforth we choosedH1∧dH2 as the representative 2-form of the class [dH1∧dH2].
We note that in the equivalence class ofdH1 ∧ dH2 there are some 2-forms which are not
closed and cannot be expressed asdH1 ∧ dH2.

Now for a given representative 2-form we have freedom in the choice ofH1 andH2.
This freedom is discussed in [1] as gauge freedom in the choice ofH1 andH2. The gauge
freedom is quite different from the freedom in the definition ofS0

2 and is a generalization
of the freedom of the additive constant in Hamiltonian dynamics.

Definition 2.11 (Nambu phase flow).Let (M3n, ω(3),H1,H2) be a Nambu system. Then the
set of diffeomorphismsgt : M3n→ M3n satisfying

d

dt

∣∣∣∣
t=0

(gtx) = (dH1 ∧ dH2)
]x ∀x ∈ M3n

= Nx
is called theNambu phase flow.

From the flow properties of a differentiable vector field it follows thatgt is a one-
parameter group of diffeomorphisms.

Theorem 2.3.Nambu phase flow preserves the Nambu structure, i.e.

gt∗ω(3) = ω(3).
Proof. The proof follows from theorem 2.2. �
Remark 2.11.Since the proof of theorem 2.3 is valid for any timet provided the flow
gt exists, it is automatically valid for any time interval, say fromt1 to t2. Furthermore,
the flow preserves theω(3), which implies that the mapgt : M3n → M3n is a canonical
transformation. This leads to the interpretation, as in the case of Hamiltonian systems,
that ‘The history of a Nambu system is a gradual unfolding of successive canonical
transformation.’ Such an observation is one of the crucial ingredients required for the
development of symplectic integrators for Hamiltonian systems. The present observation
can therefore be used for a similar algorithm for Nambu systems.

Proposition 2.6.Let (M3n, ω(3),H1,H2) be a Nambu system. ThenH1 and H2 are
constants of motion.

Proof. We prove the result forH1 (the proof forH2 is similar):

d

dt
H1 = LNH1

= iNdH1

= dH1(N)

= dH1((dH1 ∧ dH2)
]).

If we write the right-hand side in Nambu–Darboux coordinates using equations (3) we get
RHS = 0. �
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2.4. The Nambu bracket

We now define the analogue of the Poisson bracket for 2-forms. This leads to the algebra
of 2-forms. Furthermore, we also define the brackets for three functions in the conventional
fashion [1].

Definition 2.12 (Nambu Poisson bracket).Let ω(2)a andω(2)b be 2-forms. Then theNambu
Poisson bracketis a map{, } : �0

2(M
3n)×�0

2(M
3n)→ �0

2(M
3n) given by

{ω(2)a , ω(2)b } = [ω(2)a
]
, ω

(2)
b

]
][

where [, ] is the Lie bracket of vector fields.

Thus one writes

{ω(2)a , ω(2)b }(ξ, η) = (i[ω(2)a ]
,ω

(2)
b

]
]
ω(3))(ξ, η) ∀ ξ, η ∈ X (M3n).

From the definition it clear that ifω(2)a ∼ ω(2)b then the{ω(2)a , ω(2)b } = 0 and ifω(2)a ∼ ω(2)a′
andω(2)b ∼ ω(2)b′ then{ω(2)a , ω(2)b } = {ω(2)a′ , ω(2)b′ }.
Proposition 2.7.Let (M3n, ω(3)) be a Nambu manifold andα, β ∈ �0

2(M
3n) then

{α, β} = Lα](β])[ − Lβ](α])[ − d(iα] iβ]ω(3)).
Proof. We have

{α, β} = i[α],β]]ω(3)

= Lα](iβ]ω(3))− iβ] (Lα]ω(3))
= Lα](β])[ − iβ]d(iα]ω(3))
= Lα](β])[ − Lβ](α])[ − d(iα] iβ]ω(3)). �

Proposition 2.8.Let α and β be 2-forms. Further letα] be a Nambu vector field. Let
α′ = (α])[ andβ ′ = (β])[ then

{α, β} = Lα′]β ′.
Proof. The proof follows from proposition 2.7. �
Proposition 2.9.The space�0

2(M
3n) forms a Lie algebra with multiplication defined by the

bracket, i.e. ifα, β, γ ∈ �0
2(M

3n)

(i) {α + γ, β} = {α, β} + {γ, β} and{α, β + γ } = {α, β} + {α, γ };
(ii) {α, α} = 0;
(iii) {α, {β, γ }} + {β, {γ, α}} + {γ, {α, β}} = 0.

Proof. This follows from the definition of the bracket. �
Remark 2.12.In the Hamiltonian systems smooth functions on the phase space are
considered as observables. To each such functionf a natural vector field (namelyXf
which is in correspondence withdf ) is attached. We note that it is really to the 1-formdf
that a vector field is attached (all functions differing by constants form an equivalence class
producing identicaldf .)

In view of the above discussion it is clear that in the Nambu framework 2-forms play
a basic role. In this connection we point out the following facts:

(i) Vector fields are naturally associated with 2-forms.
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(ii) The bracket of 2-forms provides the Lie algebra structure. On the other hand bracket
of functions introduces a non-associative structure as noted by [1, 9].

Definition 2.13 (Nambu bracket for functions).Consider a Nambu manifold(M3n, ω(3)) and
let f, g, h beC∞ functions onM3n. Then theNambu bracket for functionsis given by

{f, g, h} = L(dg∧dh)]f = i(dg∧dh)]df.
By using equations (3) in Nambu–Darboux coordinates

{f, g, h} =
n−1∑
i=0

3∑
k,l,m=1

εklm
∂f

∂x3i+k

∂g

∂x3i+l

∂h

∂x3i+m
.

In three dimensions this is simply the definition of the bracket given by Nambu [1].

Proposition 2.10.Consider a Nambu system(M3n, ω(3), g, h). Let f, g′, h′ ∈ C∞(M3n)

satisfying(dh ∧ dg) ∼ (dh′ ∧ dg′) and(df ∧ dg′)][ = (df ∧ dg′), then we have

{f, g, h}dg′ = i(dg∧dh)] i(df∧dg′)]ω(3).
Proof. We have

{f, g, h}dg′ = (L(dg∧dh)]f )dg′

= (i(dg∧dh)] (df ∧ dg′))
= i(dg∧dh)] i(df∧dg′)]ω(3). �

The following proposition gives the relation between the bracket of 2-forms and the
bracket of functions.

Proposition 2.11.Let (M3n, ω(3)) be a Nambu manifold and letf, g, h1, h2 beC∞ functions
satisfying(df ∧ dg)][ = df ∧ dg and(dh1 ∧ dh2)

][ = dh1 ∧ dh2. Then

{dh1 ∧ dh2, df ∧ dg} = d{f, h1, h2} ∧ dg + df ∧ d{g, h1, h2}.
Proof. From proposition 2.7 we have

{dh1 ∧ dh2, df ∧ dg} = L(dh1∧dh2)] (df ∧ dg). �
Remark 2.13.If a function f is an integral of motion then the Nambu bracket of the
function {f,H1,H2} is zero and conversely. On the other hand, ifβ is a 2-form such
that {dH1 ∧ dH2, β} = 0 then there exists a 2-formβ ′ in the equivalence class ofβ which
is an invariant of motion. Also by proposition 2.11 these two statements are consistent.

3. Applications of Nambu mechanics

The purpose of this section is to demonstrate that there are systems that can be described
appropriately using the formalism developed here.

3.1. Coupled rigid bodies

We now consider the simplest case of a coupling between two symmetric tops. The coupling
introduced is proportional to thez component of the angular momentum of each rotor (such
an idealized situation corresponds under certain assumptions to the case of two symmetric
tops interacting with each other through a magnetic moment coupling). The equations of
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motion for the angular momenta ({x1, y1, z1} and{x2, y2, z2}) of the tops in their respective
body coordinates are

ẋ1 = 1

Iy1Iz1

[y1z1(Iz1 − Iy1)+ Iz1C3y1z2]

ẏ1 = − 1

Ix1Iz1

[x1z1(Iz1 − Ix1)+ Iz1C3x1z2]

ż1 = 0

ẋ2 = 1

Iy2Iz2

[y2z2(Iz2 − Iy2)+ Iz2C3y2z1]

ẏ2 = − 1

Ix2Iz2

[x2z2(Iz2 − Ix2)+ Iz2C3x2z1]

ż2 = 0.

These equations have the generalized Nambu form in the sense of this paper and they
can also be obtained from the following Nambu functions:

H1 = 1
2(x1

2+ y1
2+ z1

2)+ 1
2(x2

2+ y2
2+ z2

2)

H2 = 1

2

(
x1

2

Ix1

+ y1
2

Iy1

+ z1
2

Iz1

)
+ 1

2

(
x2

2

Ix2

+ y2
2

Iy2

+ z2
2

Iz2

)
+ C3z1z2.

It is obvious that the constantC3 depends on the initial orientation of the tops in the
laboratory frame. In the absence of coupling the tops obey the Euler equations individually.
In the above vector field the terms likeIz1C3y1z2 can be considered to be the effective
external torque on one top due to the presence of the other. The important point to note is
that this torque merely changes the precession frequency of both the rigid bodies.

3.2. Fluid flows

It has been known for a long time that two-dimensional incompressible fluid flows can
be studied using the two-dimensional Hamiltonian framework. Holm and Kimura [11]
realized that the Nambu description is suitable for three-dimensional integrable flows of
incompressible fluids in the Lagrangian picture. However, the three-dimensional Nambu
system is not suitable as a framework for the formulation of non-integrable fluid flows. We
suggest that this requirement can be fulfilled by an appropriate choice ofH1, H2 in a 3n-
dimensional Nambu framework. Specifically we show that the Arter and Chandrashekhar
flows (describing Rayleigh–B́enard convective motion) can be cast as flows on an invariant
three-dimensional subspace of a six-dimensional Nambu system.

Consider a Nambu manifold(R6, ω(3)) where

ω(3) = dx ∧ dy ∧ dz+ dx ′ ∧ dy ′ ∧ dz′
in standard coordinates{x, y, z, x ′, y ′, z′} of R6.

It can be straightforwardly verified (using any symbolic manipulation package) that the
Nambu functions

H1 = log

(
sin(x)

sin(y)

)
− log

(
sin(x ′)
sin(y ′)

)
−K2 cos(x ′)

sin(x ′)
(y − y ′)−K2 cos(y ′)

sin(y ′)
(x − x ′) (4)

H2 = sin(x) sin(y) sin(z)− sin(x ′) sin(y ′) sin(z′)+ (y − y ′)A+ (x − x ′)B (5)
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where

A = K2 cos(y ′) cos(y) sin2(x) sin(z)

cos(x) sin(y ′)−K2 sin(x) cos(y ′)

B = − K2 cos(x ′) cos(x) sin2(y) sin(z)

cos(y) sin(x ′)+K2 sin(y) cos(x ′)

produce a flow for which the subspace

x = x ′ y = y ′ z = z′ (6)

is an invariant subspace. Moreover, the flow restricted to this subspace has precisely the
form of the Chandrashekhar flow. The equations governing Chandrashekhar flow are

ẋ = − sin(x) cos(y) cos(z)−K2 cos(x) sin(y) cos(z)

ẏ = − cos(x) sin(y) cos(z)+K2 cos(y) sin(x) cos(z)

ż = 2 cos(x) cos(y) sin(z)

where(x, y, z) are the coordinates of the fluid particles in the Lagrangian picture.
In an exactly similar manner, if we choose the Nambu functions as

H1 = log

(
sin(x)

sin(y)

)
− log

(
sin(x ′)
sin(y ′)

)
− 2b

cos(y) cos(2z′)
sin(x ′) cos(z)

(x − x ′)

+ 2b
cos(x) cos(2z′)
sin(y ′) cos(z)

(y − y ′)

H2 = sin(x) sin(y) sin(z)− sin(x ′) sin(y ′) sin(z′)− (x − x ′)C + (y − y ′)D
where

C =
cos(x) sin(y)

(
(cos2(x)+ cos2(y)) cos(2z) sin(z)− (cos(2x) cos(2y)) sin(2z) cos(z)

)
cos(2z)(cos2(x)− cos2(y))

D =
cos(y) sin(x)

(
(cos2(x)+ cos2(y)) cos(2z) sin(z)− (cos(2x) cos(2y)) sin(2z) cos(z)

)
cos(2z)(cos2(x)− cos2(y))

then in the invariant subspace we get equations governing Arter flow, namely

ẋ = − sin(x) cos(y) cos(z)+ b cos(2x) cos(2z)

ẏ = − cos(x) sin(y) cos(z)+ b cos(2y) cos(2z)

ż = 2 cos(x) cos(y) sin(z)− b(cos(2x)+ cos(2y)) sin(2z)

where again(x, y, z) are coordinates in the Lagrangian picture.

4. Conclusions

We have developed a geometric framework for the formulation of generalized Nambu
systems. This formalism is more suitable from the view point of dynamical systems.
As demonstrated by the example of Arter flow, a potentially non-integrable flow finds
a description in terms of generalized Nambu flow. Specifically, the Chandrashekhar flow
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and the Arter flow have been identified with the motion that takes place in an invariant
three-dimensional subspace of a six-dimensional Nambu system.

An interesting feature of the present formalism is the following. Whereas a three bracket
of functions gives rise to a non-associative structure, a Nambu Poisson bracket of 2-forms
gives rise to a Lie algebra. It was found that formulations involving 2-forms provide a
natural approach to a Nambu system of order three. We feel that it is worth investigating
the issues such as symmetries, reduction and integrability for such systems further. Nambu
systems of higher order could also be investigated. However, so far we have not carried
this out due to the lack of appropriate physical examples.
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Appendix

Definition A.1 (block-diagonal form).Let (M3n, ω(3)) be a Nambu manifold. A 2-formα is
called ablock-diagonal formif for someX ∈ X (M3n)

iXω
(3) = α.

Definition A.2 (non-diagonal form).Let (M3n, ω(3)) be a Nambu manifold. A 2-formα is
called anon-diagonal formif for each z1, z2 ∈ X (M3n) such thatα(z1, z2) 6= 0 @ X with
the propertyω(3)(X, z1, z2) = α(z1, z2).

Remark A.1.If a form is not non-diagonal this does not imply that it is block diagonal.

Proposition A.1.Let (M3n, ω(3)) be a Nambu manifold and letα be any 2-form. Then

α = αd + α′
whereαd is a block-diagonal form andα′ is a non-diagonal form, and the decomposition
is unique.

Proof. Consider the Darboux coordinates

α =
n−1∑
i,j=0

3∑
l,m=1

α3i+l 3j+mdx3i+l ∧ dx3j+m

=
n−1∑
i=0

3∑
l,m=1

α3i+l 3i+mdx3i+l ∧ dx3i+m

+
n−1∑

i,j=0,i 6=j

3∑
l,m=1

α3i+l 3j+mdx3i+l ∧ dx3j+m.

It is easy to see that the first term, which we denote byαd , is a block-diagonal form
and the second term, which we denote byα′, is a non-diagonal form. Now we prove the
uniqueness of the decomposition. Letαd1 , α

′
1 andαd2 , α

′
2 be two distinct decompositions of
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α such thatαd1 , α
d
2 are block-diagonal forms andα′1, α

′
2 are non-diagonal forms. Thus we

haveαd1 + α′1 = αd2 + α′2: this implies thatα′2 is not non-diagonal. Henceα has a unique
decomposition. �
Definition A.3.We define a map] : �0

2(M
3n)→ X (M3n) : α 7→ α] such that

iα]ω
(3) = αd

whereαd is the block-diagonal part ofα.

This map can be identified as the map introduced in section 2.2. Sinceαd is unique the
definition of the map is coordinate free.
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